Background: Long-term evaluation of gingival recession treatment is important for clinical decision-making. The aim of this clinical trial was to evaluate the acellular dermal matrix graft (ADMG) in the treatment of gingival recessions over a 3-year follow-up period, comparing a new surgical approach (test group) to a conventional procedure (control group).

Study design: A total of 28 bilateral Miller Class I or II gingival recessions were selected and randomly assigned to test and control groups. Gingival recession, width of keratinised tissue, probing depth and relative clinical attachment level were assessed at baseline, 12 months and 36 months post-surgery.

Results: Although both procedures improved all the evaluated parameters for all periods, comparisons between the groups revealed statistically significant greater recession reduction favouring the new technique from baseline to the 12-month evaluation and from baseline to the 36-month evaluation (p = 0.000). Statistically significant differences were not found between the 12-month and the 36-month evaluations; however, the root coverage obtained with the conventional technique decreased from 60% at 1 year to 58% at 3 years, while for the new technique it remained stable at approximately 83% over 3 years.

Conclusion: The new technique is more suitable for root coverage with ADMG when compared with the conventional procedure, showing a statistically significant better clinical performance that was maintained over a 3-year period.

Introduction

Long-term comparative evaluation of root coverage surgical procedures is important for clinical decision-making, because it provides information about the stability of results over several years1.

Since its introduction in periodontics, the acellular dermal matrix graft (ADMG) has been successfully used as an advantageous substitute for the subepithelial connective tissue graft (SCTG) in the treatment of gingival recessions2–11. Avoiding a second surgical site to harvest the autogenous con-
nective tissue donor material, the allograft decreases the risk of post-operative complications, and increases the number of teeth that can be treated in a single intervention. Similar good root coverage results were achieved with the SCTG and the ADMG procedures according to 6-month comparative clinical trials8,9 and 1-year comparative clinical trials11,12. In addition, recently Hirsch et al13 showed that coverage of root by sub pedicle ADMG or SCTG is a very predictable procedure that is stable for 2 years post-operatively. However, it is important to emphasise that in these studies the allograft was used as an autogenous connective tissue graft through techniques that were primarily developed for the autograft. Considering that the ADMG has some unique characteristics, such as the absence of cells and the presence of vascular channels only that are not lined with endothelial cells, it can be suggested that a surgical technique, designed specifically for the allograft, may improve its performance and possibly obtain superior clinical results. In fact, a surgical technique designed for the treatment of localised gingival recessions with the ADMG was previously evaluated in a randomised clinical study in two post-operative periods, 6 and 12 months14,15. This controlled study verified the superiority of this new surgical technique in comparison with the conventional technique, through statistically significant superior root coverage results in favour of the test procedure, in both 6- and 12-month evaluations.

Therefore, the purpose of the present study was to investigate the stability of these two different surgical techniques for the treatment of localised gingival recessions with the ADMG during a 36-month follow-up.

\section*{Study design}

\subsection*{Study population}

After the approval of the Institution’s Human Research Committee, the patients selected for the study agreed to the study protocol and gave informed consent prior to treatment. The entry criteria were: 1) at least one pair of similar localised contralateral Miller Class I or II gingival recessions \(\geq 3\) mm; 2) no contributory medical history; and 3) non-smokers. Under these requirements a total of 28 bilateral gingival recessions were selected, constituting the sample size.

After a plaque control programme, including oral hygiene instructions, scaling and root planing, and crown polishing, the selected bilateral gingival recessions were randomly assigned to test and control groups by the flip of a coin. Both groups were treated with the acellular dermal matrix (AlloDerm, LifeCell, The Woodlands, TX, USA) as a subepithelial graft. In the control group the use of the allograft was based on a conventional technique proposed by Langer and Langer16 for the SCTG, but the graft was not left partially exposed as previously described. In the test group, the contralateral recessions were treated with the new technique and the allografts were also completely covered.

\section*{Clinical parameters}

The clinical measurements – gingival recession (GR), probing depth (PD), relative clinical attachment level (RCAL), and width of keratinised tissue (KT) – were assessed by one blinded examiner at the mid-buccal point of the teeth with localised gingival recessions and their adjacent teeth using an automated periodontal probe (Florida Probe, Florida Probe Corporation, Gainesville, FL, USA) and an acrylic stent with reference marks to determine the exact site of measurement at the baseline, 12 months and 36 months after the surgeries. The width of keratinised tissue was assessed after staining the gingival tissues with Schiller’s iodine solution.

\section*{Surgical procedures}

The same operator performed the surgical procedures at the same clinical appointment. Following local anaesthesia, the flaps were designed to accommodate subepithelially the ADMG. In the control group the releasing incisions were placed on the proximal angles of the involved tooth (Fig 1) and in the test group the two releasing incisions were displaced to the mesial and distal line angles of the adjacent teeth, distant from the recession, providing a broader flap (Fig 2). Subsequently, the same steps were followed for both techniques. Sulcular incisions were made, uniting the releasing incisions, partial-
thickness flaps were reflected, and the exposed root surfaces were gently planed and conditioned with a 24\% ethylenediaminetetraacetic acid (EDTA) gel preparation for 2 minutes with subsequent copious rinsing with sterile saline. Finally, the ADMGs were aseptically rehydrated in sterile saline, trimmed in shape and size in order to cover the exposed root surfaces and extending the distance of 2 mm laterally and sutured with sling 5-0 resorbable sutures. The previously reflected partial-thickness flaps were coronally positioned to entirely cover the allografts and also sutured into place with sling sutures. The areas were re-examined to ascertain that the allografts were completely covered and that the flaps were sutured without tension. The vertical incisions were sutured with simple interrupted sutures. A periodontal dressing was applied, changed after 7 days, and removed after 14 days.

All patients were instructed to rinse 3 times a day with a 0.12\% chlorhexidine digluconate solution for 14 days, and amoxicillin (500 mg, tid) was prescribed for 7 days, starting 24 hours before the surgical procedures. Discontinuation of tooth brushing and attention to avoid trauma or pressure at the surgical sites were also recommended during that period.

The sutures were removed after 14 days, and the patients were instructed to clean the surgical sites with a cotton pellet soaked in 0.12\% chlorhexidine.
digluconate solution 3 times a day for more 10 days. The participants were recalled after the previously determined periods for clinical examinations and measurements, while maintenance procedures were performed at every 3 months.

Results

Fourteen patients completed the 36-month evaluation, providing a total of 28 bilateral gingival recessions treated. Baseline dimensions of the defects were similar in both groups. Hence, the experimental groups were homogenous at baseline according to the

Statistical analyses

Quantitative data were recorded as mean ± standard deviation. The Mann-Whitney Test was used to determine if the two groups had similar-sized defects pre-operatively, and if one surgical procedure produced a better clinical result after 36 months. The Wilcoxon test was used to analyse if the clinical measurements differed before and after treatment. For all statistical analyses the significance level of 5% was adopted.
clinical parameters evaluated. Within each group, all the parameters showed significant improvement after 36 months (Table 1). The only exception was the PD reduction, which was not statistically different after this period in the control group.

After 36 months, supporting the findings achieved in the previous 6-month and 12-month examinations, the gingival recession reduction of the test group was superior to that obtained in the control group and this difference was again statistically significant (p = 0.000) (Table 2). Statistically significant differences were not found between the 12-month and the 36-month evaluations (Table 3), however the root coverage obtained with the conventional technique decreased from 60% at 1 year to 58% at 3 years, while for the new technique it remained stable around 83% over 3 years (Fig. 3).

With respect to the other parameters – increase in KT width, PD reduction and RCAL gain – no statistically significant differences were found between...
the groups after 36 months, although the improvements provided by the new technique were numerically greater than that obtained by the control group (Table 2).

Considering that the flap design of the new technique involves the adjacent teeth, these units of test and control groups were also evaluated during the study using the same parameters used for the selected teeth. In some cases these adjacent teeth were also affected by gingival recessions. Both procedures improved in some extent the parameters evaluated at the 36-month examination, however, the analysis between the two groups showed statistically significant changes in GR, width of KT and RCAL in favour of the test procedure.

Discussion

Initially, the objective of this controlled randomised prospective clinical study was to evaluate if a surgical technique designed specifically for the allograft could improve its performance and possibly obtain superior clinical results. Past 36 months, the focus of the present evaluation was to investigate the stability of results provided by the root coverage ADMG surgical techniques: the new surgical approach and the conventional procedure.

In the 6-month and 12-month evaluations, it was concluded that an extended flap (new technique) is more suitable for the treatment of localised gingival recessions with the ADMG when compared with the conventional SCTG flap design. It was discussed that the new surgical approach fulfils the allograft’s extra vascular supply requirement. It is important to emphasise that the ADMG is obtained from a human donor skin tissue process that removes its cell components while preserving the remaining bioactive components and the extracellular matrix. During this process only the collagen and elastin matrices are maintained undamaged to function as a scaffold to allow ingrowth by host tissues.

Therefore, the allograft detains a non-vital structure that depends on cells and blood vessels from the recipient site to achieve reorganisation. In contrast, the healing and revascularisation of an autograft is also based on the anastomoses between blood vessels of the gingival corium and those pre-existing in the graft.

Considering that the survival capability of grafts at the receptor site represents a crucial point for gingival recession treatment success, the superior root coverage obtained with the test procedure in the previous 6-month and 12-month evaluations and also in the present 36-month evaluation could be explained by the disposal of an extra source of cells and blood vessels. According to Mörmann and Ciancio, who investigated the changes in microcirculation of different surgical incisions and flaps in a fluorescein angiographic clinical study, the flaps should be broad enough at their base to include major gingival vessels. The new technique for root coverage with ADMG described in this study is based on the displacement of the releasing incisions to the proximal line angles of the adjacent teeth in order to favour the incorporation process of the allograft. This was achieved, not only providing more blood vessels, more nutrients and a better source of cells, but also allowing easier tissue manipulation, especially in

Barros et al Root coverage with ADMG
obtaining a tensionless coronally positioned flap to completely cover the allograft. This effort is particularly important, because the ADMG has the ability to revascularise only when in direct contact with vital tissues. Finally, the placement of the releasing incisions far away from the allograft also reduces the possibility of its exposure when compared with the conventional procedure, an important factor since it could compromise the root coverage.

In reference to the long-term evaluation of the present study, statistically significant differences were not found between the 12-month and the 36-month evaluations. However, the root coverage obtained with the conventional technique slightly decreased from 60% at 1 year to 58% at 3 years, while for the new technique it remained stable at approximately 83% over 3 years (Fig 3). This result indicates that an adequate surgical procedure for the ADMG is important not only to achieve improved root coverage but also to achieve stable long-lasting results in the treatment of gingival recessions.

The adjacent teeth of both groups were also evaluated during the study in order to verify if the inclusion of these teeth in the flap design of the new technique could be detrimental to them. However, the results showed that the test technique provided statistically significant improvements in the adjacent teeth in terms of GR reduction, increase in KT and gain in CAL from baseline to the 36-month examination when compared with the control group, probably as a result of the coronal displacement of the flaps.

Conclusions

The results of this study support the superiority of the new technique in the treatment of localised gingival recessions with ADMG when compared with the conventional procedure. The better clinical performance of the test procedure, statistically significant, was maintained over a 3-year period.

References